Cascading Techniques for a High-Speed Memory Interface

Zheng Gu, Peter Gregorius, Daniel Kehrer, Lydia Neumann, Evelyn Neuscheler, Thomas Rickes, Hermann Ruckerbauer, Ralf Schledz, Martin Streibl, Juergen Zielbauer

Qimonda AG, Munich
Outline

• Trade-off DRAM channel bandwidth vs. density
• DRAM repeater architectures
• Transparent Repeater Testchip
• Measurement Results
• Summary
transition single-ended to differential signaling
Example for DDR3 Multidrop Configuration

Problems with multidrop channels (reflections, crosstalk, etc.)
Challenge for Post-DDR3 DRAM

• increase peak DRAM bandwidth x 2
 - 1.6 - 3.2 Gbps for single ended I/Os
 - 3.2 – 6.4 Gbps for differential I/Os
 \[\text{given by fixed connector pin count}\]

• increase DRAM density
 - Need to have up to 72 devices per DIMM (e.g. for Servers)
 \[\Rightarrow\text{problem with point-to-point signaling}\]
Alternative Approach: repeater DRAM

- cascade of DRAMs, commands and data is piped through the chain

DIMM with multi-drop connections

DIMM with repeater DRAMs
Repeater DRAM System View

power, repeat latency, circuit complexity Trade-off jitter accumulation, signal integrity
Repeater DRAM Testchip

RXp
RXn

RX amp

ctrl<63:0>
serial control interface

I/Q

data

ring oscillator

1:2 freq. divider
phase interpolator

global clock buffer

global clock

selector

Pre-drv

TX drv

TXp
TXn

half rate clock trunk

transient repeat
resample path

6.5mm
1cm

Rank5
Rank2
Rank1
Rank0

L6 L5 L4 L3 L2 L1 CL
data
clk
Repeater DRAM Testchip

RXp
RXn

RX amp

ctrl<63:0>
serial control interface

RX
amp

global clock buffer

half rate clock trunk

I/Q

1:2 freq. divider

phase interpolator

data

clk

transparent repeat

resample path

serializer

ring oscillator

selector

Pre-driv

TX drv

TXp
TXn

Rank0

Rank1

L6
L5
L4
L3
L2
L1
CL

data

clk

6.5mm

1cm
Repeater DRAM Testchip

RXp
RXn

RX amp

ctrl<63:0>

serial control interface

phase interpolator
1:2 freq. divider

data

I/Q

clk

serializer

selector

Pre drv

TXp

TXn

TX drv

global clock buffer

half rate clock trunk

transparent repeat resample path

data

Rank0

Rank1

Rank2

Rank5

L6 L5 L4 L3 L2 L1 CL

6.5mm

1cm

data

clk
Repeater DRAM Testchip: Reveiver Amplifier
Repeater DRAM Testchip: Pre-Driver and Offchip-Driver (OCD)
Die Photograph of a Single Data Repeat Lane
Testboard Photographs

Top View

Bottom View
Data Eyes vs. Rank in Transparent Repeat

4.8Gbps
(rank1 input)
(rank3 input)
(rank5 input)

5.3Gbps

200mV/div
50ps/div

clk
data
L6 L5 L4 L3 L2 L1 CL
Rank0
Rank1
Rank2
Rank3
Rank4
Rank5
Eye Opening resolved by the sampler vs. Rank #
Important Issue: Device Mismatch Effects in Clock Distribution Path

- RXp, RXn
- RX amp
- ctrl<63:0>
- serial control interface
- global clock buffer
- RXp, RXn
- TXp, TXn
- TX drv
- Pre-drv
- 1:2 freq. divider
- phase interpolator
- transparent repeat resample path
- ring oscillator
- data
- I/Q
- clk
- serializer
- selector
- half rate clock trunk
- global clock buffer
- half rate clock trunk

Eye width (UI):
Eye1_meas
Eye1_sim

70% 80% 90% 100% 110% 120% 130%
0 1 2 3 4 5 6 7 8 9 10

of samples
Impact of Clock Path Device Mismatch

=> Needs correction circuits or increased transistor size (power!)

standard deviation = 9%·UI
(7%·UI from the clock generator)
Sampler Eye Characterisation vs. Rank #

receiver offset

phase interpolator

offset shmoo

clock-to-data shmoo

clk

data

R0 R1 R2 R3 R4 R5
Sampler Eye Characterisation vs. Rank #

5.3Gbps

Rank 2
Rank 3
Rank 4
Rank 5

offset shmoo
clock-to-data shmoo

receiver offset shmoo -200mV...+200mV

phase interpolator setting shmoo 0-360° (60 steps)
Power & Latency Comparison

<table>
<thead>
<tr>
<th>Functional Block</th>
<th>Resample Mode</th>
<th>Transparent Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX Amplifier</td>
<td>3mA</td>
<td>3mA</td>
</tr>
<tr>
<td>Sampler</td>
<td>8mA</td>
<td>-</td>
</tr>
<tr>
<td>Serializer</td>
<td>4mA</td>
<td>-</td>
</tr>
<tr>
<td>Selector / Predriver</td>
<td>7mA</td>
<td>7mA</td>
</tr>
<tr>
<td>TX Buffer (@ 50Ohm Termination)</td>
<td>16mA</td>
<td>16mA</td>
</tr>
<tr>
<td>Global Clock Trunk per Lane</td>
<td>11mA</td>
<td>11mA</td>
</tr>
<tr>
<td>1:2 Divider, CML-2-CMOS, DCC</td>
<td>6mA</td>
<td>-</td>
</tr>
<tr>
<td>Phase Interpolator</td>
<td>5mA</td>
<td>-</td>
</tr>
<tr>
<td>Total Current Consumption</td>
<td>60mA</td>
<td>37mA</td>
</tr>
<tr>
<td>Latency Rank to Rank @4.8Gbps</td>
<td>1.5ns</td>
<td>280ps</td>
</tr>
</tbody>
</table>
Conclusion

• demonstrated a transparent repeater chain of 6 ranks
 - standard DRAM process
 - standard single-layer wire-bond package
• achieved up to 5.3Gbps with a BER<1e-14
• transparent repeater mode
 - consumes 40% less power
 - has 80% less latency

→ attractive option to increase memory density for a
differential point-to-point high-speed interface